This program works with the DM15C series of calculators by SwissMicros. The extended memory firmware should be installed. The hp15c Simulator by Torsten Manz can be used as well if the DM15C preferences are set to 229 registers. The programs are self-contained so they can be extracted as separate programs.

**********************************************************************************************************************

The program fits data that may be linear at low x,y amplitudes but y falls off at higher x values.

This is a common issue in many physical systems. x1, y1 should preferably be on the linear part of the curve.

CurveP is not a regression. It assumes that the data is reasonably precise. Linear and power curves can be fitted, as well.

The equation used is

Originally chart recorders were used to obtain data which occupied the y axis, leaving interpreted results naturally plotted on the x axis, when graphed on the same paper.

Here we are using y as the equation output axis.

x is first normalised, the equation solved and un-normalised to get y.

The equation parameters, scale, order, slope and factor are found by entering some standard data.

y1 ENTER, y2 ENTER, y3 GSB A

x1 ENTER, x2 ENTER, x3 R/S

Do not press ENTER after y3 or x3.

y3>y2>y1 and x3>x2>x1.

After normalisation y3 = x3 = 10 so x3 is not saved. y3 is used instead in the program.

The curve runs through the origin and three points (x1,y1) (x2,y2) (x3,y3).

The order of the upper part of the curve is displayed.

x input to GSB B to get y.

If there is a blank value, enter it and subtract the answers.

Enter f USER to avoid the GSB or f key during data input.

Test [x,y] data sets [2,2; 4,5; 5,8] [1,1; 2,4; 3,9] [1,1; 2,2; 3,3] [20,3.69; 30,8.64; 47,22.16]

Enter y data then GSB A and x data then R/S. eg. y1 ENTER y2 ENTER y3 GSB A, x1 ENTER x2 ENTER x3 R/S.

The last data set relates an element's atomic number to its X-ray fluorescence k line energy in keV

See Moseley's Law.

In this update I have improved the starting values for the iteration. Order is limited to 10

**********************************************************************************************************************

N GSB C for prime factors of N

This program factors an integer N. FIX 0 mode is activated during execution. Each factor is displayed by pressing R/S. The calculator is returned to FIX 4 mode when the program is completed. If the integer is a prime number, the program just returns the integer entered.

Example:1 5 0 GSB C.

Factors, displayed with R/S, are 2, 3, 5, 5 (when the display reads 150.0000 the factorization ends)

**********************************************************************************************************************

The sum of integers up to n are calculated.

I adapted a 9 step subroutine by Torsten Manz to produce a new 7 step program.

The 9 step subroutine used the original formula found by Carl Friedrich Gauss:

```
n n(n + 1)
∑ k = ——————————
k=1 2
```

This version uses the rearranged sum (n

1. Enter the number n to compute the sum of integers from 1 to n.

2. Press GSB D to run.

Example:

n = 100, (n

n= 1000, (n

Note that the sum is the

For the even number sum 1 to 10, the mid-point (average) is 5.5. The sum is 5.5 x 10 = 55.

Looking at your open hands there are usually 10 fingers - assume they represent the integers 1 to 10.

Starting to count at one thumb and ending with 10 at the other thumb, the mid-point (average) is between the little fingers, i.e at 5.5.

For the odd number sum 1 to 9, the mid-point (average) is 5. The sum is 5 x 9 = 45.

For 1 to 100 you can just average 1 and 100 or 50 and 51 = 50.5. The sum is 50.5 x 100 = 5050.

For 1 to 99 the average is 50. The sum is 50 x 99 = 4950.

**********************************************************************************************************************

1. Store 4 of the following 5 variables, using appropriate cash flow conventions as follows:

n STO 1 --- Number of compounding periods

i STO 2 --- Interest rate (periodic) expressed as a %

PV STO 3 --- Present Value

PMT STO 4 --- Periodic Payment

FV STO 5 --- Future Value

Store the appropriate value (1 for Annuity Due or 0 for Regular Annuity) as

B/E STO 6 --- Begin/End Mode. The default is 0 for regular annuity or End Mode.

2. Store the register number X containing the floating variable to the indirect storage register as X STO I.

3. f SOLVE E

Example from the HP-15C Advanced Functions Handbook - Page 145 and Page 151

"Many Pennies (alternatively known as A Penny for Your Thoughts):

A corporation retains Susan as a scientific and engineering consultant.

Her fee is one penny per second for her thoughts, paid every second of every day for a year.

Rather than distract her with the sounds of pennies dropping, the corporation proposes to deposit them for her into a bank account.

Interest accrues at the rate of 11.25 percent per annum compounded every second.

At year's end these pennies will accumulate to a sum

total = (payment) x ((1+i/n)^n-1)/(i/n)

where payment = $0.01 = one penny per second,

i = 0.1125 = 11.25 percent per annum interest rate,

n = 60 x 60 x 24 x 365 = number of seconds in a year.

Using her HP-15C, Susan reckons that the total will be $376,877.67.

But at year's end the bank account is found to hold $333,783.35 .

Is Susan entitled to the $43,094.32 difference?"

31,536,000 STO 1

(11.25/31,536,000) STO 2

0 STO 3

-0.01 STO 4

5 STO I

f SOLVE E

The HP-15C now gives the correct result: $333,783.35.

Thanks to Thomas Klemm for debugging the routine.

The code has been edited to reflect Thomas' suggested changes.

Jeff Kearns

The hyperbolic sine in this program calculates e

**********************************************************************************************************************

This program finds the roots of a quadratic equation of the form ax

Push a, b, and c into the Z, Y, and X registers of the stack respectively, then press GSB 1.

The discriminant b

If it is positive there are two real roots.

If is zero there is one real root.

If it is negative there are two complex roots.

The roots of the equation will appear in the X and Y registers.

Use X<>Y to view the second root.

If the "C" indicator appears then the roots are complex.

f (i) can be used to temporarily view the imaginary parts.

Press g CF 8 to clear this flag before running the routine again.

Example: a = 1, b = 2, c = 3.

1 ENTER 2 ENTER 3 GSB 1

Roots are in x and y.

x= -1 - √2i

pressf (i) to view the imaginary part.

x<>y

y = -1 + √2i

pressf (i) to view the imaginary part.

**********************************************************************************************************************

Let's say you would like to know what 0.15625 as a fraction is.

You type: 0.15625.

GSB 2

The display shows "running" and then you see first 5, and then a second later, 32

The fraction is therefore 5/32 (numerator = 5 and denominator = 32).

32 remains in X (display) after the program finishes and 5 remains in Y.

Guido's RPN calculators

**********************************************************************************************************************

N GSB 3 where N is the number of equations (8 or less).

A N N is displayed.

Matrix [A] has a dimension of NxN.

Enter the coefficients of x

Press R/S after each is entered.

B N 1 is displayed.

Matrix [B] has a dimension of Nx1.

Enter the constants.

Press R/S after each is entered.

C N 1 is displayed.

Matrix [C] has a dimension of Nx1.

Values for x

**********************************************************************************************************************

N GSB 4 to start the program where N<8

1.0000 is displayed, this is a prompt to enter x value for the first data point.

At x

At y

Repeat R/S to get all the polynomial coefficients up to a

GSB 5 can be used to enter new y data.

An extended memory DM15c calculator should be used as space is a little tight on a standard hp15c

For a more complete explanation go here

**********************************************************************************************************************

Name | Description | Name | Description | Name | Description | |||
---|---|---|---|---|---|---|---|---|

A | CurveP - Enter y inputs then x inputs R/S | 4 | Nth degree Polynomial Fitting | .2 | Prime factor Loop | |||

B | CurveP - Enter x to get y | 5 | Enter new yi values for same xi | .3 | Prime factor Loop | |||

C | Prime factorisation | 6 | Nth-degree Polynomial Fitting Loop | .4 | Convert to fraction - loop and test | |||

D | Little Gauss formula | 7 | Nth-degree Polynomial Fitting Loop | .5 | Linear equations - coefficients of xi storage loop | |||

E | TVM Solve | 8 | Matrix [B] xi coefficients readout Loop | .6 | Linear Equations - constant storage loop | |||

1 | Quadratic equation solver | 9 | Dummy label to skip when matrix is full | .7 | Linear equations - result display | |||

2 | Convert to Fraction | .0 | CurveP - loop | .8 | Quadratic equation - subroutine | |||

3 | Solve a System of Linear Equations | .1 | RCL.5 1/x STO.5 | .9 | Quadratic equation - subroutine |

Name | Description | Name | Description | Name | Description | |||
---|---|---|---|---|---|---|---|---|

0 | Fraction, decimal input value, row index for matrix elements | 7 | xscale, Ps | .4 | scale | |||

1 | y1, N, Result ,GI, column index for matrix elements | 8 | yscale, Pt | .5 | temp1 | |||

2 | y2, I,loop rows | 9 | slope, Pw | .6 | temp2 | |||

3 | y3, | .0 | absolute decimal number for fraction | .7 | temp3 | |||

4 | order, PMT, Pd | .1 | x1 | .8 | xinput | |||

5 | factor, FV, | .2 | x2 | (i) | Register of TVM value required | |||

6 | count, B/E 1/0 | .3 | order first guess | I | Loop columns |

Number | Description | |
---|---|---|

8 | Indicates, by showing "C" in the display, that the roots are complex numbers |

Line | Display | Key Sequence | Line | Display | Key Sequence | Line | Display | Key Sequence | |||
---|---|---|---|---|---|---|---|---|---|---|---|

000 | 141 | 45 3 | RCL 3 | 282 | 20 | × | |||||

001 | 42,21,11 | f LBL A | 142 | 10 | ÷ | 283 | 44 1 | STO 1 | |||

002 | 44 8 | STO 8 | 143 | 43 32 | g RTN | 284 | 42 30 | f Re↔Im | |||

003 | 33 | R⬇ | 144 | 42,21, .1 | f LBL . 1 | 285 | 44 .1 | STO . 1 | |||

004 | 44 2 | STO 2 | 145 | 45 .5 | RCL . 5 | 286 | 42 30 | f Re↔Im | |||

005 | 33 | R⬇ | 146 | 15 | 1/x | 287 | 45 3 | RCL 3 | |||

006 | 44 1 | STO 1 | 147 | 44 .5 | STO . 5 | 288 | 45 .3 | RCL . 3 | |||

007 | 45 8 | RCL 8 | 148 | 43 32 | g RTN | 289 | 42 25 | f I | |||

008 | 1 | 1 | 149 | 42,21,13 | f LBL C | 290 | 20 | × | |||

009 | 0 | 0 | 150 | 42, 7, 0 | f FIX 0 | 291 | 2 | 2 | |||

010 | 44 3 | STO 3 | 151 | 44 2 | STO 2 | 292 | 20 | × | |||

011 | 10 | ÷ | 152 | 44 0 | STO 0 | 293 | 30 | − | |||

012 | 44,10, 2 | STO ÷ 2 | 153 | 2 | 2 | 294 | 42 31 | f PSE | |||

013 | 44,10, 1 | STO ÷ 1 | 154 | 44 1 | STO 1 | 295 | 42 30 | f Re↔Im | |||

014 | 31 | R/S | 155 | 42,21, .3 | f LBL . 3 | 296 | 42 31 | f PSE | |||

015 | 44 7 | STO 7 | 156 | 45 0 | RCL 0 | 297 | 42 30 | f Re↔Im | |||

016 | 33 | R⬇ | 157 | 45,10, 1 | RCL ÷ 1 | 298 | 11 | √x̅ | |||

017 | 44 .2 | STO . 2 | 158 | 36 | ENTER | 299 | 44 0 | STO 0 | |||

018 | 33 | R⬇ | 159 | 42 44 | f FRAC | 300 | 42 30 | f Re↔Im | |||

019 | 44 .1 | STO . 1 | 160 | 43 20 | g x=0 | 301 | 44 .0 | STO . 0 | |||

020 | 45 7 | RCL 7 | 161 | 22 .2 | GTO . 2 | 302 | 45,40, .2 | RCL + . 2 | |||

021 | 45 3 | RCL 3 | 162 | 1 | 1 | 303 | 42 30 | f Re↔Im | |||

022 | 10 | ÷ | 163 | 44,40, 1 | STO + 1 | 304 | 45,40, 2 | RCL + 2 | |||

023 | 44,10, .2 | STO ÷ . 2 | 164 | 22 .3 | GTO . 3 | 305 | 45 1 | RCL 1 | |||

024 | 44,10, .1 | STO ÷ . 1 | 165 | 42,21, .2 | f LBL . 2 | 306 | 45 .1 | RCL . 1 | |||

025 | 45 3 | RCL 3 | 166 | 45 1 | RCL 1 | 307 | 42 25 | f I | |||

026 | 45 2 | RCL 2 | 167 | 31 | R/S | 308 | 10 | ÷ | |||

027 | 10 | ÷ | 168 | 33 | R⬇ | 309 | 45 2 | RCL 2 | |||

028 | 43 12 | g LN | 169 | 33 | R⬇ | 310 | 45,30, 0 | RCL − 0 | |||

029 | 45 3 | RCL 3 | 170 | 44 0 | STO 0 | 311 | 45 .2 | RCL . 2 | |||

030 | 45 .2 | RCL . 2 | 171 | 1 | 1 | 312 | 45,30, .0 | RCL − . 0 | |||

031 | 10 | ÷ | 172 | 30 | − | 313 | 42 25 | f I | |||

032 | 43 12 | g LN | 173 | 43,30, 0 | g TEST x≠0 | 314 | 45 1 | RCL 1 | |||

033 | 10 | ÷ | 174 | 22 .3 | GTO . 3 | 315 | 45 .1 | RCL . 1 | |||

034 | 44 4 | STO 4 | 175 | 45 2 | RCL 2 | 316 | 42 25 | f I | |||

035 | 44 .3 | STO . 3 | 176 | 42, 7, 4 | f FIX 4 | 317 | 10 | ÷ | |||

036 | 1 | 1 | 177 | 43 32 | g RTN | 318 | 43 32 | g RTN | |||

037 | 44 5 | STO 5 | 178 | 42,21,14 | f LBL D | 319 | 42,21, 2 | f LBL 2 | |||

038 | 0 | 0 | 179 | 43 11 | g x² | 320 | 43 16 | g ABS | |||

039 | 44 6 | STO 6 | 180 | 43 36 | g LSTx | 321 | 44 0 | STO 0 | |||

040 | 45 1 | RCL 1 | 181 | 40 | + | 322 | 1 | 1 | |||

041 | 45,10, .1 | RCL ÷ . 1 | 182 | 2 | 2 | 323 | 44 1 | STO 1 | |||

042 | 44 9 | STO 9 | 183 | 10 | ÷ | 324 | 42,21, .4 | f LBL . 4 | |||

043 | 42,21, .0 | f LBL . 0 | 184 | 43 32 | g RTN | 325 | 33 | R⬇ | |||

044 | 1 | 1 | 185 | 42,21,15 | f LBL E | 326 | 15 | 1/x | |||

045 | 44,40, 6 | STO + 6 | 186 | 44 24 | STO (i) | 327 | 44,20, 1 | STO × 1 | |||

046 | 45 3 | RCL 3 | 187 | 45 2 | RCL 2 | 328 | 36 | ENTER | |||

047 | 45 4 | RCL 4 | 188 | 26 | EEX | 329 | 43 44 | g INT | |||

048 | 43,30, 7 | g TEST x>y | 189 | 2 | 2 | 330 | 30 | − | |||

049 | 45 .3 | RCL . 3 | 190 | 10 | ÷ | 331 | 4 | 4 | |||

050 | 44 4 | STO 4 | 191 | 36 | ENTER | 332 | 16 | CHS | |||

051 | 45 3 | RCL 3 | 192 | 36 | ENTER | 333 | 13 | 10ˣ | |||

052 | 45 5 | RCL 5 | 193 | 1 | 1 | 334 | 43 10 | g x≤y | |||

053 | 45,20, 3 | RCL × 3 | 194 | 40 | + | 335 | 22 .4 | GTO . 4 | |||

054 | 16 | CHS | 195 | 43 12 | g LN | 336 | 45 0 | RCL 0 | |||

055 | 12 | eˣ | 196 | 34 | x↔y | 337 | 45 1 | RCL 1 | |||

056 | 45,20, 3 | RCL × 3 | 197 | 43 36 | g LSTx | 338 | 43 44 | g INT | |||

057 | 45,20, 9 | RCL × 9 | 198 | 1 | 1 | 339 | 20 | × | |||

058 | 30 | − | 199 | 43,30, 6 | g TEST x≠y | 340 | 42 31 | f PSE | |||

059 | 45 3 | RCL 3 | 200 | 30 | − | 341 | 43 36 | g LSTx | |||

060 | 45 4 | RCL 4 | 201 | 10 | ÷ | 342 | 43 32 | g RTN | |||

061 | 43,30, 2 | g TEST x<0 | 202 | 20 | × | 343 | 42,21, 3 | f LBL 3 | |||

062 | 45 .3 | RCL . 3 | 203 | 45,20, 1 | RCL × 1 | 344 | 43, 5, 8 | g CF 8 | |||

063 | 44 4 | STO 4 | 204 | 36 | ENTER | 345 | 42,16, 0 | f MATRIX 0 | |||

064 | 14 | yˣ | 205 | 12 | eˣ | 346 | 36 | ENTER | |||

065 | 10 | ÷ | 206 | 45,20, 3 | RCL × 3 | 347 | 42,23,11 | f DIM A | |||

066 | 44 .4 | STO . 4 | 207 | 34 | x↔y | 348 | 42,16, 1 | f MATRIX 1 | |||

067 | 45,10, 1 | RCL ÷ 1 | 208 | 2 | 2 | 349 | 45,16,11 | RCL MATRIX A | |||

068 | 45 .1 | RCL . 1 | 209 | 10 | ÷ | 350 | 42 31 | f PSE | |||

069 | 45 4 | RCL 4 | 210 | 42,22,23 | f HYP SIN | 351 | 42,21, .5 | f LBL . 5 | |||

070 | 14 | yˣ | 211 | 43 36 | g LSTx | 352 | 31 | R/S | |||

071 | 20 | × | 212 | 12 | eˣ | 353 | u 44 11 | USER STO A | |||

072 | 44 .5 | STO . 5 | 213 | 20 | × | 354 | 22 .5 | GTO . 5 | |||

073 | 1 | 1 | 214 | 2 | 2 | 355 | 45,23,11 | RCL DIM A | |||

074 | 43,30, 8 | g TEST x<y | 215 | 20 | × | 356 | 42,16, 1 | f MATRIX 1 | |||

075 | 32 .1 | GSB . 1 | 216 | 45,20, 4 | RCL × 4 | 357 | 1 | 1 | |||

076 | 1 | 1 | 217 | 26 | EEX | 358 | 42,23,12 | f DIM B | |||

077 | 45 .5 | RCL . 5 | 218 | 2 | 2 | 359 | 45,16,12 | RCL MATRIX B | |||

078 | 30 | − | 219 | 45,10, 2 | RCL ÷ 2 | 360 | 42 31 | f PSE | |||

079 | 43 12 | g LN | 220 | 45,40, 6 | RCL + 6 | 361 | 42,21, .6 | f LBL . 6 | |||

080 | 16 | CHS | 221 | 20 | × | 362 | 31 | R/S | |||

081 | 45,10, .1 | RCL ÷ . 1 | 222 | 40 | + | 363 | u 44 12 | USER STO B | |||

082 | 44 5 | STO 5 | 223 | 45,40, 5 | RCL + 5 | 364 | 22 .6 | GTO . 6 | |||

083 | 45,20, .2 | RCL × . 2 | 224 | 43 32 | g RTN | 365 | 3 | 3 | |||

084 | 16 | CHS | 225 | 42,21, 1 | f LBL 1 | 366 | 45,16,12 | RCL MATRIX B | |||

085 | 12 | eˣ | 226 | 43, 6, 8 | g F? 8 | 367 | 42 31 | f PSE | |||

086 | 45,20, .2 | RCL × . 2 | 227 | 22 .9 | GTO . 9 | 368 | 45,16,11 | RCL MATRIX A | |||

087 | 45,20, 9 | RCL × 9 | 228 | 44 3 | STO 3 | 369 | 42,26,13 | f RESULT C | |||

088 | 45 .4 | RCL . 4 | 229 | 33 | R⬇ | 370 | 10 | ÷ | |||

089 | 45 .2 | RCL . 2 | 230 | 16 | CHS | 371 | 42,16, 1 | f MATRIX 1 | |||

090 | 45 4 | RCL 4 | 231 | 44 2 | STO 2 | 372 | 42,21, .7 | f LBL . 7 | |||

091 | 14 | yˣ | 232 | 43 11 | g x² | 373 | 31 | R/S | |||

092 | 20 | × | 233 | 34 | x↔y | 374 | u 45 13 | USER RCL C | |||

093 | 40 | + | 234 | 2 | 2 | 375 | 22 .7 | GTO . 7 | |||

094 | 44 .6 | STO . 6 | 235 | 20 | × | 376 | 42,16, 0 | f MATRIX 0 | |||

095 | 45 2 | RCL 2 | 236 | 44 1 | STO 1 | 377 | 43 32 | g RTN | |||

096 | 45,10, 3 | RCL ÷ 3 | 237 | 45,20, 3 | RCL × 3 | 378 | 42,21, 4 | f LBL 4 | |||

097 | 3 | 3 | 238 | 2 | 2 | 379 | 42,16, 0 | f MATRIX 0 | |||

098 | 0 | 0 | 239 | 20 | × | 380 | 1 | 1 | |||

099 | 20 | × | 240 | 30 | − | 381 | 40 | + | |||

100 | 45,10, 6 | RCL ÷ 6 | 241 | 42 31 | f PSE | 382 | 44 2 | STO 2 | |||

101 | 11 | √x̅ | 242 | 43,30, 2 | g TEST x<0 | 383 | 36 | ENTER | |||

102 | 45,20, .6 | RCL × . 6 | 243 | 22 .8 | GTO . 8 | 384 | 42,23,11 | f DIM A | |||

103 | 45 .6 | RCL . 6 | 244 | 11 | √x̅ | 385 | 1 | 1 | |||

104 | 45,30, 2 | RCL − 2 | 245 | 44 0 | STO 0 | 386 | 42,23,12 | f DIM B | |||

105 | 10 | ÷ | 246 | 45,40, 2 | RCL + 2 | 387 | 42,16, 1 | f MATRIX 1 | |||

106 | 15 | 1/x | 247 | 45,10, 1 | RCL ÷ 1 | 388 | 42,21, 6 | f LBL 6 | |||

107 | 1 | 1 | 248 | 45 2 | RCL 2 | 389 | 45,23,12 | RCL DIM B | |||

108 | 40 | + | 249 | 45,30, 0 | RCL − 0 | 390 | 30 | − | |||

109 | 44 .7 | STO . 7 | 250 | 45,10, 1 | RCL ÷ 1 | 391 | 44 25 | STO I | |||

110 | 45,20, 4 | RCL × 4 | 251 | 43 32 | g RTN | 392 | 45 0 | RCL 0 | |||

111 | 44 4 | STO 4 | 252 | 42,21, .8 | f LBL . 8 | 393 | 31 | R/S | |||

112 | 45 .7 | RCL . 7 | 253 | 43, 4, 8 | g SF 8 | 394 | 36 | ENTER | |||

113 | 1 | 1 | 254 | 11 | √x̅ | 395 | 36 | ENTER | |||

114 | 30 | − | 255 | 42 30 | f Re↔Im | 396 | 36 | ENTER | |||

115 | 43 16 | g ABS | 256 | 45,10, 1 | RCL ÷ 1 | 397 | 1 | 1 | |||

116 | 1 | 1 | 257 | 44 .0 | STO . 0 | 398 | u 44 11 | USER STO A | |||

117 | 26 | EEX | 258 | 45 2 | RCL 2 | 399 | 42,21, 7 | f LBL 7 | |||

118 | 16 | CHS | 259 | 45,10, 1 | RCL ÷ 1 | 400 | 20 | × | |||

119 | 6 | 6 | 260 | 42 25 | f I | 401 | u 44 11 | USER STO A | |||

120 | 43,30, 8 | g TEST x<y | 261 | 42 30 | f Re↔Im | 402 | 42,21, 9 | f LBL 9 | |||

121 | 22 .0 | GTO . 0 | 262 | 45 2 | RCL 2 | 403 | 42, 5,25 | f DSE I | |||

122 | 45 4 | RCL 4 | 263 | 45,10, 1 | RCL ÷ 1 | 404 | 22 7 | GTO 7 | |||

123 | 43 32 | g RTN | 264 | 45 .0 | RCL . 0 | 405 | 42, 5, 2 | f DSE 2 | |||

124 | 42,21,12 | f LBL B | 265 | 16 | CHS | 406 | 22 6 | GTO 6 | |||

125 | 44 .8 | STO . 8 | 266 | 42 25 | f I | 407 | 42,21, 5 | f LBL 5 | |||

126 | 45,10, 7 | RCL ÷ 7 | 267 | 43 32 | g RTN | 408 | 45 0 | RCL 0 | |||

127 | 45 3 | RCL 3 | 268 | 42,21, .9 | f LBL . 9 | 409 | 31 | R/S | |||

128 | 20 | × | 269 | 44 3 | STO 3 | 410 | u 44 12 | USER STO B | |||

129 | 44 .8 | STO . 8 | 270 | 42 30 | f Re↔Im | 411 | 22 5 | GTO 5 | |||

130 | 45 4 | RCL 4 | 271 | 44 .3 | STO . 3 | 412 | 45,16,12 | RCL MATRIX B | |||

131 | 14 | yˣ | 272 | 33 | R⬇ | 413 | 45,16,11 | RCL MATRIX A | |||

132 | 45,20, .4 | RCL × . 4 | 273 | 16 | CHS | 414 | 42,26,12 | f RESULT B | |||

133 | 45 5 | RCL 5 | 274 | 44 2 | STO 2 | 415 | 10 | ÷ | |||

134 | 45,20, .8 | RCL × . 8 | 275 | 42 30 | f Re↔Im | 416 | u 45 12 | USER RCL B | |||

135 | 16 | CHS | 276 | 16 | CHS | 417 | 42,21, 8 | f LBL 8 | |||

136 | 12 | eˣ | 277 | 44 .2 | STO . 2 | 418 | 31 | R/S | |||

137 | 45,20, .8 | RCL × . 8 | 278 | 42 30 | f Re↔Im | 419 | u 45 12 | USER RCL B | |||

138 | 45,20, 9 | RCL × 9 | 279 | 11 | √x̅ | 420 | 22 8 | GTO 8 | |||

139 | 40 | + | 280 | 34 | x↔y | ||||||

140 | 45,20, 8 | RCL × 8 | 281 | 2 | 2 |